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PURPOSE. To investigate the association between precorneal tear film (PCTF)– and
meibum-derived (O-Acyl)-omega-hydroxy fatty acids (OAHFAs) and PCTF thinning in
meibomian gland health and dysfunction.

METHODS. Of 195 eligible subjects (18–84 years, 62.6% female), 178 and 170 subjects
provided both PCTF optical coherence tomography (OCT) imaging and mass spectrom-
etry data for tears (n = 178) and meibum (n = 170). The PCTF thinning rate was
measured in the right eye using an ultra-high-resolution, custom-built OCT. Tear and
meibum samples from the right eye were infused into the SCIEX 5600 TripleTOF mass
spectrometer in the negative ion mode. Intensities (m/z) of preidentified OAHFAs were
measured with Analyst 1.7TF and LipidView 1.3 (SCIEX). Principal component (PC) anal-
yses and Spearman’s correlations (ρ) were performed to evaluate the association between
OAHFAs and PCTF thinning rates.

RESULTS. In meibum and tear samples, 76 and 78 unique OAHFAs were detected, respec-
tively. The first PC scores of the meibum-derived OAHFAs had statistically significant
correlations with PCTF thinning rates (ρ = 0.18, P = 0.016). Among 10 OAHFAs with the
highest first PC loadings, six OAHFAs had negative correlations with PCTF thinning rate
(18:2/16:2, ρ = −0.19, P = 0.01; 18:2/30:1, ρ = −0.21, P = 0.008; 18:1/28:1, ρ = −0.22,
P = 0.004; 18:1/30:1, ρ = −0.22, P = 0.005; 18:1/25:0, ρ = 0.22, P = 0 .006; and 18:1/26:1,
ρ = −0.22, P = 0.006), while one OAHFA had a positive correlation with PCTF thinning
rate (18:2/18:1, ρ = 0.48, P = 0.006). Tear film-derived OAHFAs had no association with
the PCTF thinning rate.

CONCLUSIONS. Several human meibum-derived OAHFAs showed significant associations
with PCTF thinning, suggesting that these OAHFAs could be implicated in the mechanism
underlying the stabilization and thinning of the PCTF. The tear-film derived OAHFAs were,
however, independent of the rate of PCTF thinning.

Keywords: tear film, (O-Acyl)-omega-hydroxy fatty acids, lipids, meibum, precorneal tear
film, tear film lipid layer, meibomian gland, dry eye disease

A thin film (∼2 to 5 μm)1–3 of semiviscous tear fluid
covers the ocular surface. Shortly after a blink, the

human precorneal tear film (PCTF) thins and breaks up
abruptly (∼seconds), but again spreads over the ocular
surface and restores its thickness following redistribution
by a subsequent blink.4 The PCTF thinning is primarily due

to evaporative loss of aqueous from the PCTF rather than
other mechanisms, such as tangential or radial fluid flow or
gravity.4–6 When aqueous evaporation is excessive, a cascade
of events is initiated, resulting in tear hyperosmolarity and
inflammatory damage to the ocular surface.7–9 According
to the Tear Film Ocular Surface Society (TFOS) Dry Eye
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Workshop (DEWS II), evaporation-induced tear film instabil-
ity is a hallmark mechanism that triggers the vicious cycle
of dry eye disease (DED).10,11

Overlying the mucoaqueous phase of the human tear
film is a thin layer of lipids (mean 42 nm, range, 15 to
157 nm)12 that forms a barrier against evaporative aque-
ous loss,9,13–16 and renders elasticity to the air-tear surface,
providing resistance to stretching and thinning deformations
and conferring mechanical stability to the tear film.17–19 This
tear film lipid layer (TFLL) consists of a complex mixture
of non-polar (e.g., wax esters, cholesteryl esters) and polar
lipids (e.g., phospholipids, (O-Acyl)-omega-hydroxy fatty
acids [OAHFAs]),19–21 which are predominantly derived from
meibum secreted by the meibomian glands.22,23 Therefore
the ability of the TFLL to retard evaporation and protect
against aqueous loss depends to a large extent on meibo-
mian gland health. Qualitative or quantitative alterations
in meibum resulting from meibomian gland dysfunction
(MGD) may affect PCTF structure, function, and dynamics
and may produce deficiencies in lipid constituents of the
TFLL, inhibiting its ability to spread the nonpolar lipids
evenly over the mucoaqueous phase.10,24 Indeed, MGD is
recognized as the leading cause of evaporative DED.10,25

Studies have shown that the expression of meibum increases
PCTF stability and TFLL thickness26 and decreases the rate of
tear evaporation in healthy subjects and those with coexist-
ing DED and MGD.27 Conversely, the PCTF has been found
to be unstable and the rate of tear evaporation increased
in subjects with absent or less confluent lipid layer.14 Clini-
cal and population-based studies also indicate a high rate of
comorbidity of MGD and DED,24,28–32 suggesting a strong
association between meibomian gland health and PCTF
organizational characteristics.

Although changes in PCTF dynamics are better estab-
lished in DED, the molecular mechanisms or alterations
underlying these physiological changes have yet to be fully
understood. This is partly due to the complex relationship
between the TFLL thickness and PCTF thinning, because
studies have shown at best a modest negative association
between these two parameters, with some even reporting a
positive association between thicker TFLL and clinical signs
of DED.6,33 These findings have stimulated the hypothe-
sis that the TFLL interacts with other tear film constituents
(e.g., mucins, proteins, and salts) to function as an antievap-
orative barrier.19 However, factors other than TFLL struc-
ture (thickness) such as the biochemical composition are
becoming recognized as being critical.34,35 A growing body
of literature now suggests that the TFLL composition and
the biophysical properties of its constituents may control
the rate of PCTF thinning or evaporation of tears from the
ocular surface.21,36–41

Of all tear film lipids, OAHFAs, a subclass of amphiphilic
anionogenic lipids more recently discovered in human
meibum,42 are a strong lipid biomarker candidate involved
in maintaining the TFLL41,43 and imparting a direct
evaporation-resistant effect to stabilize the PCTF.44,45 Several
studies have demonstrated the presence of OAHFAs in
human meibum and tear film46–50 and suggested their poten-
tial role in PCTF thinning and stabilization.43,50,51 In mice,
deficiency of OAHFA-producing ω-hydroxylase Cyp4f39
fatty acid led to dry eyes and MGD.43 Cyp4f39-deficient
mice also showed decreases in specific OAHFAs and their
derivatives, suggesting that this reduction likely caused DED
and MGD, although findings were somewhat inconclusive
because of limited sample size, no changes in other major

FIGURE 1. Schematic diagram of the structure of OAHFA18:1/30:1,
which contains 18 carbons in the fatty acid chain (black) and 30
carbons in the hydroxyl fatty acid chain (blue), with one double
bond in each chain.

OAHFAs, and confounding observations such as corneal
epithelial damage, which may have instead contributed to
the observed dry eye.43 In humans, OAHFAs were found to
decrease with increasing severity of DED49 and increase after
eyelid warming treatment in MGD.51

On the basis of these findings, it is hypothesized that
OAHFAs are implicated in the mechanism underlying the
destabilization and thinning (evaporation) of the PCTF. The
present study was designed to test this hypothesis by inves-
tigating the association between the abundance of meibum-
and tear film–derived OAHFAs with PCTF structural charac-
teristics.

MATERIALS AND METHODS

Ethics approval for this study was obtained from the
Institutional Review Board of the University of Alabama
at Birmingham. Each subject gave informed consent in
writing before participation in the study, and all study
procedures adhered to the tenets of the Declaration of
Helsinki.

Nomenclature

OAHFAs are large molecular weight molecules of a fatty acid
esterified with an omega-hydroxy fatty acid. The number of
bonds in the aliphatic chain determines their degree of satu-
ration. Saturated OAHFAs contain no double bonds, whereas
unsaturated OAHFAs contain one or more double bonds.52

Standard nomenclature for OAHFAs is used in this study53,54;
OAHFA X1:Y1/X2:Y2, where X1 and Y1 denote the number
of carbons and double bonds in the fatty acid component,
respectively, and X2 and Y2 denote the number of carbons
and double bonds in the omega-hydroxy fatty acid compo-
nent, respectively. Figure 1 shows the structure of an exam-
ple OAHFA 18:1/30:1.

Human Subject Recruitment

To determine the eligibility of subjects for participation in
the study, a prescreening was carried out among subjects
who had previously provided consent to be contacted for
future studies as part of the University of Alabama at Birm-
ingham Clinical Eye Research Facility IRB approved recruit-
ment databases and procedures. Subjects were included if
they were non-contact lens wearers and 18 years of age or
older. Subjects receiving eye care for acute ocular diseases
(except MGD or DED), currently using topical ophthalmic
lubricants or medications, having health or ocular condi-
tions that could impact meibomian gland function or tear
film parameters, and currently participating in any other
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intervention-based clinical research study, were excluded.
Based on the prescreening, a total of 222 subjects consented
to participate in the study.

Clinical Protocol

All subjects attended a single study visit in the Clinical Eye
Research Facility at the University of Alabama at Birming-
ham. After a detailed ocular and systemic history, subjects
completed the Ocular Surface Disease Index (OSDI) ques-
tionnaire55 and underwent a comprehensive examination of
the adnexa and ocular surface including tear film imaging.56

The expressibility and quality of meibum from the meibo-
mian gland orifices were examined by applying firm digital
pressure to the lower eyelid. Each gland was graded on a
scale of 0 to 3, with 0 representing clear fluid, 1 represent-
ing cloudy liquid, 2 representing cloudy with debris, and 3
representing toothpaste-like thick secretion.57 The sum of
the grades from the central eight glands provided the clin-
ical meibum grade score. Based on the OSDI and meibum
grade score, each subject was classified into one of the four
disease classification groups, adapted from the TFOS Inter-
national Workshop on MGD guidelines: Normal (OSDI < 13
and meibum grade < 10), MGD (OSDI ≥ 13 and meibum
grade ≥ 10), Asymptomatic MGD (OSDI < 13 and meibum
grade ≥ 10), and Mixed (OSDI ≥ 13 and meibum grade <

10).58

Tear film imaging techniques are described elsewhere.56

Briefly, cross-sectional OCT images of the tear film were
captured from the right eye of each subject in a dimly
illuminated room at a controlled temperature (23°–25°C)
and humidity (30%–50%). During imaging, subjects were
instructed to blink three times and then keep their eyes
wide open and steady for as long as possible. To avoid tran-
sients because of vertical drift of the tear film after blinks,
the image capture was initiated approximately 2.5 seconds
after the third blink. Each subject had their right eye imaged
twice to obtain two sets of images/videos. After tear film
imaging, tears and meibum samples were collected from the
right eye of each subject using collection methods optimized
for collecting tear film and meibum OAHFAs, as described
previously.48,59–63

OCT Imaging

A combined ultra-high-resolution OCT and thickness-
dependent fringes interferometer system was used to image
the tear film in vivo. This system is capable of capturing
images of the tear film with an axial resolution of 1.38 μm.
A detailed description of the optical design of this system
is available elsewhere.64 In brief, the OCT system houses
a broadband superluminescent diode (T850-HP; Superlum
Diodes, Ltd, Moscow, Russia) with a central wavelength
of 840 nm and a full-width half-maximum of 175 nm as
an illumination source, whereas the thickness-dependent
fringe system consists of a Quartz Tungsten-Halogen Lamp
(QTH10; Thorlabs, Newton, NJ, USA). During imaging, the
OCT system captures eight horizontal line scans (each
comprising of 128 A-lines), evenly spaced along a superior-
inferior axis, within a 3 mm–diameter central zone. The
acquisition time of each OCT C-scan is approximately 30
ms at a rate of 32 frames per second.

Mass Spectrometry

A semitargeted direct infusion electrospray MS and
MS/MSALL in the negative ion mode was performed on a
TripleTOF 5600 mass spectrometer (SCIEX, Framingham,
MA, USA) to assess the abundance of OAHFAs in tear and
meibum samples. This analytical approach has been previ-
ously validated to provide reliable assessments of lipids in
small volumes of the tear film and quantify concentrations
of polar lipids, including OAHFAs.48,61 The extraction and
mass spectrometry analysis protocols associated with this
technique have been described in detail in prior reports.61,63

Data Analyses

The rates of PCTF thinning were calculated using linear
regression fits of PCTF thicknesses derived from the tempo-
ral series of OCT images, as described previously.56,64 Data
on PCTF thinning rates for each disease classification group
are available elsewhere.56 For the analysis of MS data, peak
intensities of individual OAHFAs identified in meibum and
tear samples were normalized by the internal standard inten-
sity to obtain standard-corrected intensity. Data were then
imported and analyzed in R65 and RStudio.66 To avoid issues
in downstream analyses, intensities of undetected OAHFAs
(zero values) were replaced with a small imputed value (one-
fifth of the minimum peak intensity of a particular OAHFA).
Data corrected by internal standard were then normalized by
the total ion current, mean-centered and subjected to Pareto
scaling. For dimensionality reduction, principal component
(PC) analyses were performed using “prcomp” function of
the “stats” package (v3.6.2) to project the high-dimensional
data to a few components that capture most of the varia-
tion in the data. Data on tears and meibum OAHFAs were
analyzed separately.

The primary outcome of this study was the association
between the abundance of OAHFAs and PCTF thinning rate
(evaporation). Because some PC scores (weighted average of
all features) and PCTF thinning measures were not normally
distributed, the associations between PCs (first and second)
and PCTF thinning rates were analyzed using Spearman’s
correlations (ρ). If the association was significant, the abso-
lute loadings of the PCs were ranked, and a list of 10 OAHFAs
that had the highest loadings and contributed the most to
the PC was derived. Finally, Spearman’s correlations were
performed to evaluate the association between standard-
corrected intensity of these OAHFAs and PCTF thinning rate.
Data are expressed as mean ± standard deviation of the
mean unless otherwise stated. The value of alpha was set
at 0.05 for statistical significance.

RESULTS

Baseline Characteristics

Of the 222 subjects consented, 195 were eligible based on
classifications conducted using data collected during the
clinical examination. Out of these 195 subjects (age 18–
84 years; 62.6% female), 178 subjects had both tear film
samples and imaging data collected, while 170 subjects had
both meibum samples and imaging data collected. The Table
summarizes the baseline characteristics of these subjects.

Downloaded from iovs.arvojournals.org on 01/23/2022



Biomarkers for Meibomian Gland Dysfunction IOVS | July 2021 | Vol. 62 | No. 9 | Article 13 | 4

FIGURE 2. PC analysis of meibum-derived OAHFAs. (A) Scree plot showing the proportion of variance explained by the first 10 PCs. (B) PC
biplot showing sample scores stratified by the four disease classification groups and feature loadings (black arrows).

TABLE. Baseline Characteristics of the Study Subjects

Tears Meibum

Number of subjects 178 170
Total OAHFAs 78 76
Gender
Male 65 66
Female 113 104

Age (y), mean (SD) 39.3 (14.2) 39.4 (14.3)
Ethnicity
Hispanic 1 1
Non-Hispanic 177 169

Race
Asian 18 19
African American 93 88
Caucasian 65 60
Other 2 3

Volume collected (μL), mean (SD) 0.03 (0.01) 0.03 (0.01)

Meibum-Derived OAHFAs

A total of 76 unique OAHFA species were identified in
meibum across all subject samples. Figure 2 shows the
results of the unsupervised multivariate analyses conducted
using the PC method that included all 76 features. As shown
in the scree plot (eigenvalues or proportion of variances of
PCs) in Figure 2A, the first two PCs captured more than
50% of the variation in the data, with the first PC account-
ing for 29.8% variance, and the second PC accounting for
21.0% variance. Although most samples projected into a
small region forming a narrow herd as illustrated by the
PC scores in Figure 2B, a few samples were separated from
the herd, indicating some separation among the four classi-
fication groups. However, there was little difference among
the contributions of the features (black arrows in Fig. 2B).
Among the 76 OAHFAs (features), one OAHFA (18:2/16:2)
showed a relatively large vector length, suggesting a signif-
icantly greater contribution to the PCs than other OAHFAs
(features).

To evaluate the association between the PCs and
imaging parameters, Spearman’s correlation analyses were
conducted between the sample scores obtained from PC
analyses and PCTF thinning rate (Fig. 3). Although the first
PC scores correlated positively with PCTF thinning rate (ρ =
0.18, P = 0.016), the second PC scores were not associated

FIGURE 3. Distributions of the first PC scores of the meibum-derived
OAHFAs as a function of PCTF thinning rate. There was a significant
positive correlation between the first PC scores and PCTF thinning
rate.

with PCTF thinning rate (ρ = −0.01, P = 0.89). In addition,
no significant associations were found between the first PC
scores and PCTF thickness (ρ = 0.10, P = 0.18) or aver-
age noninvasive keratography break-up time (ρ = −0.09,
P = 0.24).

To identify the most contributing OAHFAs, the abso-
lute values of the first PC loadings of all features were
ranked in descending order, and 10 OAHFAs with the high-
est loadings were selected. Figure 4 shows the correla-
tions between the abundance of these OAHFAs (expressed
as standard-corrected intensity) and PCTF thinning rate.
One OAHFA (18:0/20:0) was detected in only one sample
and therefore omitted from subsequent analysis. Of the
other nine OAHFAs, only OAHFA 18:2/18:1 had a posi-
tive correlation with PCTF thinning rate (ρ = 0.48, P
= 0.006), whereas the abundance of the other OAHFAs
had negative correlations with PCTF thinning rate. These
were: OAHFA 18:2/16:2 (ρ = −0.19, P = 0.01), OAHFA
18:2/30:1 (ρ = −0.21, P = 0.008), 18:1/28:1 (ρ = −0.22,
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FIGURE 4. Association between PCTF thinning rate and the abundances of OAHFAs that contributed the most to the first PC. Asx_MGD,
asymptomatic MGD.

FIGURE 5. PC analysis of PCTF-derived OAHFAs. (A) Scree plot showing the proportion of variance explained by the first 10 PCs. (B) PC
biplot showing sample scores stratified by the four disease classification groups and feature loadings (black arrows).

P = 0.004), 18:1/30:1 (ρ = −0.22, P = 0.005), 18:1/25:0 (ρ
= −0.22, P = 0.006), and 18:1/26:1 (ρ = −0.22, P = 0.006).
These results indicate that subjects with greater abundances
of these OAHFA in their meibum samples had slower rates
of PCTF thinning.

PCTF-Derived OAHFAs

A total of 78 unique OAHFA species were identified in tear
samples across all subjects. Figure 4 illustrates the results

of the PC analyses of these 78 features. As shown in the
scree plot (Fig. 5A), the first two PCs explained over 60%
of the variation in the data, with the first PC accounting
for more than 50% of the variance, and the second PC
accounting for approximately 10% variance. The proportion
of variance explained by the first two PCs was greater for
the tear data (61.4%) than the meibum data (50.8%). Most
tear samples projected into a small region forming a narrow
herd (Fig. 5B). However, there was a slightly greater sepa-
ration among the groups when compared with the meibum
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FIGURE 6. Distributions of the first PC scores of the PCTF-derived
OAHFAs as a function of the PCTF thinning rate. There was no asso-
ciation between the first PC scores and the PCTF thinning rate.

data, and a relatively larger proportion of samples separated
from the herd, indicating relatively greater separation among
the four disease classification groups. However, the differ-
ence among the contributions of the features (black arrows
in Fig. 5B) was small. Among the 78 features (OAHFAs),
only one feature (OAHFA 18:2/16:2) showed a relatively
large vector length (black arrow), suggesting a significantly
greater contribution to the PCs than other features.

Spearman’s correlation analyses showed no associations
between the first PC scores and PCTF thinning rate (ρ =
0.06, P = 0.41, Fig. 6). Similarly, the second PC scores also
had no associations with the PCTF thinning rate (ρ = 0.03,
P = 0.66). These results suggested that the PCTF-derived
OAHFAs were relatively independent of the thinning rate. In
addition, no significant associations were found between the
first PC scores and PCTF thickness (ρ = −0.06, P = 0.42) or
average non-invasive keratography break-up time (ρ = 0.04,
P = 0.62).

DISCUSSION

This study set out to investigate the relationship of the
amphiphilic polar lipids, OAHFAs, derived from the human
tear film and meibum with PCTF thinning (evaporation). The
results of the study showed that the abundance of several
meibum-derived OAHFAs varied according to PCTF thin-
ning rate. This finding supports the hypothesis that OAHFAs
are implicated in the biochemical mechanism underlying
evaporation and PCTF thinning and provide evidence that
these polar amphiphilic molecules may serve as a candi-
date molecular biomarker of the PCTF stability in health and
disease.

Consistent with the findings from several previous stud-
ies,46–50 this study also detected a large number of OAHFAs
in the human PCTF (n = 78) and in meibum (n = 76). Several
meibum-derived OAHFAs (18:2/18:1, 18:2/16:2, 18:2/30:1,
18:1/28:1, 18:1/30:1, 18:1/25:0, 18:1/26:1) were found to
be associated with PCTF thinning, suggesting that these
OAHFAs could potentially act as a regulator of PCTF thinning

and stability. What biophysical properties distinguish these
OAHFAs from the others and make them particularly rele-
vant to PCTF evaporation remain unknown. Most of these
OAHFAs were unsaturated with one or more double bonds
in the acyl chain length. Therefore the degree of unsatura-
tion could be a critical property of OAHFAs. The absence
of double bonds in saturated fatty acids provides a flexi-
ble linear shape allowing for greater association with “self.”
By contrast, the presence of one or more double bonds
in unsaturated fatty acids makes packing with “self” more
difficult. This could allow greater opportunity for interdigi-
tation with the non-polar counterparts (“non-self”), provid-
ing better TFLL stability and a more effective barrier against
PCTF evaporation.44,67–69 Although most OAHFAs had an
inverse association with PCTF thinning rate, suggesting that
the abundance of these OAHFAs reduced with an increased
rate of PCTF thinning or evaporation, there was a positive
relationship between the abundance of OAHFA 18:2/18:1
with PCTF thinning rate. Considering the complex lipid
composition of the TFLL,21,70 different OAHFAs may inter-
act differently with the mucoaqueous phase and non-polar
lipids and may serve different functions as they relate to
tear evaporation.4,71 It is also possible that the ability of the
TFLL to retard evaporation depends on a delicate homeo-
static balance among several OAHFAs in the TFLL.

An important question remains regarding how these
specific OAHFAs regulate the rate of PCTF thinning and
evaporation. The TFLL at the lipid-air interface contains
a hydrophobic nonpolar lipid sublayer of cholesterol and
wax esters connected to the mucoaqueous phase by the
amphiphilic polar lipid sublayer, which predominantly
consists of OAHFAs and cholesterol-OAHFAs (∼1%–5%),
with small amounts of triglycerides, fatty acids, and phos-
pholipids (∼1%).19,23,72 It has been postulated that this
polar lipid sublayer, particularly OAHFAs, facilitates retar-
dation of tear evaporation by stabilizing the nonpolar lipid
sublayer.42,72,73 During eye-opening, the upward extension
of the mucoaqueous phase (because of negative pressure
in the upper eyelid) and the presence of TFLL lipids on
the lower eyelid region creates a surface pressure gradient,
which is nullified by the subsequent upward spreading of
TFLL on to the mucoaqueous phase.74 The latter process
requires TFLL to interact with the mucoaqueous phase and
likely involves OAHFAs because of their strong polarity as
compared with weakly polar cholesterol and wax esters.43–45

There is some evidence that the OAHFAs can spread read-
ily over large regions of mucoaqueous phase,45 retard evap-
oration and inhibit the development of DED,41 and exert
a direct evaporation-resistant effect, in addition to stabi-
lizing the TFLL.44 Mice deficient in fatty acids involved in
OAHFA production (ω-hydroxylase Cyp4f39) develop DED
and MGD.43 They also show a reduction of OAHFAs and
their derivatives and accumulation of tears on the lower
eyelids indicative of increased surface tension.43 These find-
ings suggest that OAHFAs likely act as surfactants to reduce
surface tension at the tears/air interface and thus stabilize
TFLL to retard tear evaporation and promote PCTF stabil-
ity.19,45 It has also been shown that the nonpolar sublayers
have no contribution to the evaporation-resisting property
of the TFLL.44,75 Furthermore, the defects in the TFLL and
its coverage across the ocular surface have been reported
to primarily drive the rate of tear evaporation.76 By stabiliz-
ing the TFLL, OAHFAs presumably reduce structural defects
in the lipid layer and guard against evaporation. Whereas
the antievaporative function of the TFLL may also involve
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phospholipids, which have been reported in the polar
sublayer of the human lipid layer,20 the very low concen-
tration of phospholipids in the human tear film (<0.1%72)
means that they may be unable to interact sufficiently with
the nonpolar lipids to stabilize the TFLL.

Compared with the meibum data, the first two PCs
explained greater variance in the abundance of tear film-
derived OAHFAs, suggesting that the PC technique allowed
for significantly better ordination of OAHFAs derived from
the PCTF than meibum. It is possible that, unlike meibum,
the PCTF contains two distinct sets of OAHFAs: meibo-
mian molecules and oxidized aged molecules. In this regard,
the lack of association between tear film-derived OAHFAs
and tear film characteristics found in this study is slightly
surprising. Tears contain a significantly greater concentra-
tion of phospholipids than meibum.19 These excess phos-
pholipids are likely derived from sources other than meibum
(e.g., cells deposited during blinks) and may interact with
meibum-derived OAHFAs in their antievaporative functions.
Another contributing factor could be the relatively larger
variability in the amount of tear film–derived OAHFAs and
tear film imaging measures across the subjects (see Fig. 6).
Although a high-resolution untargeted MS method as used
in this study has been previously shown to provide reli-
able characterization and quantification of OAHFAs derived
from human meibum and tear film,48,61 this technique yields
several candidate lipids requiring a multivariate analytical
approach to transform a high-dimensional data to a low-
dimensional data. This presents a considerable challenge
to investigate the role of specific OAHFAs, particularly if
only a few OAHFAs are involved in the mechanism under-
lying tear evaporation as is evident from the meibum data.
Further studies with a targeted approach with a prior chro-
matographic step may improve our understanding of the role
of tear-film–derived OAHFAs in maintaining TFLL and PCTF
stability.47

In conclusion, this study provides the first evidence
of the relationship between OAHFAs and PCTF thinning
(evaporation) in a large cohort of healthy and MGD
subjects. Results from this study demonstrate that the abun-
dances of several OAHFAs derived from human meibum
are associated with PCTF thinning (evaporation); however,
OAHFAs derived from the PCTF are independent of the
rate of PCTF thinning. The findings of this study are novel
and bridge a crucial gap in our understanding of the
PCTF homeostasis in health and disease, in addition to
providing a basis for further investigations of the mech-
anistic basis of evaporation-induced PCTF thinning and
instability.
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