
Journal of Vision (2021) 21(13):8, 1–11 1

The dynamics of grouping-induced biases in apparent
numerosity revealed by a continuous tracking technique

Pierfrancesco Ambrosi
Department of Neuroscience, Psychology, Pharmacology,
and Child Health, University of Florence, Florence, Italy

Antonella Pomè
Department of Neuroscience, Psychology, Pharmacology,
and Child Health, University of Florence, Florence, Italy

David Charles Burr

Department of Neuroscience, Psychology, Pharmacology,
and Child Health, University of Florence, Florence, Italy

School of Psychology, University of Sydney, Sydney,
NSW, Australia

Connecting pairs of items causes robust underestimation
of the numerosity of an ensemble, presumably by
invoking grouping mechanisms. Here we asked whether
this underestimation in numerosity judgments could be
revealed and further explored by continuous tracking, a
newly developed technique that allows for fast and
efficient data acquisition and monitors the dynamics of
the responses. Participants continuously reproduced the
perceived numerosity of a cloud of dots by moving a
cursor along a number line, while the number of dots
and the proportion connected by lines varied over time
following two independent random walks. The
technique was robust and efficient, and correlated well
with results obtained with a standard psychophysics
task. Connecting objects with lines caused an
underestimation of approximately 15% during tracking,
agreeing with previous studies. The response to the lines
was slower than the response to the physical
numerosity, with a delay of approximately 150 ms,
suggesting that this extra time is necessary for
processing the grouping effect.

Introduction

Humans, together with many species of animals,
can estimate without counting the numerosity of
a group of items, rapidly and efficiently (Dehaene,
2011; Nieder, 2019). Like many other visual features,
numerosity perception has been shown to be susceptible
to adaptation (Arrighi, Togoli, & Burr, 2014; Burr
& Ross, 2008), suggesting that it is a fundamental
visual attribute with a dedicated perceptual mechanism
(but see Gebuis, Cohen Kadosh, & Gevers, 2016 and
Leibovich, Katzin, Harel, & Henik, 2017 for a different

point of view). This approximate number system
has been found to be largely independent of other
perceptual features, such as item size, overall occupied
area, and item density (Anobile, Cicchini, & Burr, 2014;
Cicchini, Anobile, & Burr, 2016), and has also been
related to more complex numerical and mathematical
abilities (Anobile, Stievano, & Burr, 2013; Halberda,
Mazzocco, & Feigenson, 2008; Piazza et al., 2010).

The existence of this seemingly innate ability in
humans and many animals has been associated with
the evolutionary advantage of rapidly evaluating food
resources and social situations. Dedicated mechanisms
for numerosity perception have been shown to arise
spontaneously in neural networks not specifically
trained for numerosity discrimination (DeWind, Park,
Woldorff, & Brannon, 2019; Stoianov & Zorzi, 2012),
suggesting that the approximate number system may
originate in any complex visual system evolved for
object recognition.

An interesting hallmark of numerosity perception
is its susceptibility to perceptual grouping. When
the items in a scene are connected into pairs, either
by lines or more subtle forms of connection, people
tend to underestimate their numerosity (Adriano,
Rinaldi, & Girelli, 2021; Franconeri, Bemis, & Alvarez,
2009; He, Zhang, Zhou, & Chen, 2009; Kirjakovski
& Matsumoto, 2016). The grouping by connectedness
effect has been consistently reported in many studies
and provides evidence that the approximate number
system operates on segmented objects rather than
individual local elements. For densely packed items,
this connectivity effect is greatly decreased (Anobile,
Cicchini, Pomè, & Burr, 2017), showing that it is limited
to the estimation range of numerosity, not texture
density. It also affects functional magnetic resonance
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imaging response to number (He, Zhou, Zhou, He,
& Chen, 2015), adaptation to number (Fornaciai,
Cicchini, & Burr, 2016), and pupillometry (Castaldi,
Pomè, Cicchini, Burr, & Binda, 2021). Furthermore, it
has been demonstrated recently that the magnitude of
the effect varies according to the perceptual styles of
the participants, being weaker for those having a more
local–detailed perceptual style, compared with those
preferring a more global configuration, as evident from
the Autistic Scores of participants (Pomè, Caponi, &.
Burr, 2021a), and it requires attention to be directly
focused to the stimulus (Pomè, Caponi, & Burr, 2021b).

A recent electroencephalographic and functional
magnetic resonance imaging study (Fornaciai &
Park, 2018) showed that the effect of grouping is
not immediate, but arises after 150 ms after stimulus
onset: earlier neural activity (<100 ms) was modulated
only by physical numerosity, possibly reflecting the
sensory representation of a dot array before perceptual
segmentation. This finding provides evidence for
multiple stages of processing in the formation of
numerosity representations (Park, DeWind, Woldorff,
& Brannon, 2016; Roggeman, Santens, Fias, & Verguts,
2011), in line with several computational models of
numerosity encoding (Dehaene & Changeux, 1993;
Stoianov & Zorzi, 2012).

Here, we investigate the effect of grouping on
numerosity perception using the novel technique of
continuous tracking (Bonnen, Burge, Yates, Pillow, &
Cormack, 2015). In continuous tracking, participants
are presented with a stimulus that varies sequentially in
some property and are asked to reproduce or counteract
changes in the stimulus. The similarity between changes
in the stimulus and responses from participants is
measured by cross-correlation. This technique has
been used mostly in object tracking (Bonnen et al.,
2015; Bonnen, Huk, & Cormack, 2017; Mulligan,
Stevenson, & Cormack, 2013; Mulligan, 2002), where a
stimulus moves across the screen in a random walk, has
also provided reliable information in other perceptual
domains, including motion (Bhat, Cicchini, & Burr,
2018) and numerosity perception (Ambrosi, Burr, &
Cicchini, 2021). Continuous tracking has the advantage
of producing large amounts of data in short acquisition
times, as well as investigating dynamic properties of
perceptual processes.

In the present study, we asked participants to
track the numerosity of a dynamic cloud of items
by continuously moving a cursor on a number line.
The numerosity of the cloud was manipulated so that
some of the disks were connected by thin lines, causing
an underestimation of numerosity via the grouping
effect. Testing different rates of changes in the stimulus
provided information on the dynamics of participants’
responses that were compared with a standard
two-alternative forced choice (2AFC) experiment.
The results revealed that participant responses were

modulated by both physical numerosity and grouping,
and that the grouping requires additional encoding time
(about 150 ms) to affect numerosity perception.

Methods

Participants

Eleven voluntary participants (aged 26–33 years, 6
female) were recruited, all with normal or corrected-
to-normal vision. All participants had prior experience
in psychophysical experiments, but only one had prior
knowledge about the details of the experiment (author
P.A.). All were right handed and used their right hand
for tracking. All participants gave written informed
consent, and experimental procedures were approved
by the local ethics committee (Commissione per l’Etica
della Ricerca, University of Florence, July 7, 2020, n.
111) and are in line with the Declaration of Helsinki.

Apparatus

Stimuli were displayed on a 70 × 40 cm Display++
LCD Monitor (Cambridge Research Systems,
Rochester, UK) with a resolution of 1920 × 1080 pixels
and a refresh rate of 120 Hz. A Thrustmaster 2960623
USB joystick for PC was used to collect responses in the
tracking experiment, and a regular USB keyboard for
the 2AFC experiment. In all experiments, participants
were placed 70 cm from the screen.

Tracking experiment

Stimuli
Stimuli were generated by the Psychophysics Toolbox

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).
The target was a cloud of black and white dots of
random sizes (from 0.3° to 0.4° diameter) on a uniform
gray background, comprised within a circular area
(diameter 11°). Each dot was attached to a line segment
(length 0.55°) of the same color, resulting in a cloud of
lollipop-shaped objects. Lollipop sizes and positions
were controlled to avoid overlapping lines. Each lollipop
had a maximum presentation time (lifetime) of 100
ms (12 frames), then appeared in a different random
position. This limited lifetime paradigm avoided
participants from considering only new or disappearing
items. At the beginning of each session, there were
always 36 lollipops, with 16 of them (approximately
40%) connected to make dumbbell-shaped objects.
During the experiment, both the numerosity of the
cloud and the number of connected objects varied
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Figure 1. (A) Example of stimulus sequence. The stimulus is a cloud of randomly spaced dots with short lines attached, either in
isolation (“lollipops”) or connected to form “dumbbells.” Both the number of items, and the proportion connected, changed
independently over time. Participants tracked the perceived numerosity by moving with a joystick a cursor along a number line below
the stimulus. (B) Example data from a 30-second trial, showing numerosity, number of lines and cursor position as a function of time.
The black solid line is the number of dots on screen, both isolated and connected; the black dashed line is the number of connected
pairs; the red line is the cursor position through time. (C) Example of temporal similarity measured through cross correlation between
changes in numerosity and cursor velocity. The red line is the result of a gaussian fit around the peak of the cross-correlogram.

randomly, following a random walk constrained within
the range of 20 to 54 dots, with 0 to 32 connected.
A number line (length 8°) was displayed below the
stimuli, and participants moved a cursor with a joystick
to record continuously their estimate of perceived
numerosity. At the extremes of the number line, two
clouds of dots of numerosity 5 and 60 were presented
as references. Figure 1A and Movie 1 show examples of
the stimuli.

Experimental procedure

The numerosity of the stimulus changed at fixed time
intervals, with an additional temporal jitter between
8 and 50 ms to minimize temporal autocorrelations.
The number of changes in the positive and negative
directions was equal in every 30-second session. The
task of the participants was to move the joystick left or
right to track the numerosity on screen. Participants
were not required to keep fixation and were free to
inspect the stimulus. Each change on screen consisted
in ±8 lollipops and ±4 connecting lines. Three different
experimental conditions with different rates of changes
were tested: 800 ms, 500 ms, and 200 ms. The 500-ms
condition comprised 30 blocks of 30 seconds each (15
minutes), and both the 800-ms and 200-ms 15 blocks
of 30 seconds (7.5 minutes), collected in separate
sessions. The total of the 30-minute testing session was

performed in two rounds by each participant, both
preceded by a 2-minute training session.

2AFC Experiment
We also measured perceived numerosity with

standard 2AFC technique. Stimuli were presented
sequentially to mimic the sequential presentation of
the tracking experiment. Two conditions were tested
in the connected condition, where the probe stimulus
comprised 36 lollipops with 14 connected by lines (40%
connected). The tests stimulus consisted in isolated
lollipops with numerosity spanning from 10 to 60.
In the isolated condition, both the probe and the
test comprised isolated lollipops. Participants had to
indicate which stimulus was more numerous, by pressing
the corresponding arrows on a keyboard. Stimuli were
identical to the ones used in the tracking experiment,
with a presentation time of 500 ms. Participants were
allowed 2 seconds to answer, before the presentation of
a new trial. Each participant performed 400 trials.

Data analysis

Psychophysics
Data from each participant in the 2AFC experiments

were analyzed separately, plotting individual
psychometric functions, proportion of trials where test
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appeared of higher numerosity than the probe as a
function of probe numerosity. Data were fit with a
cumulative Gaussian distribution whose mean defines
the point of subjective equality (PSE). The width of
the underlying Gaussian divided by its mean gives the
participant’s Weber fraction. From the PSEs of each
participant, we computed the bias index expressed as:

BIAS (%) = 100 ∗
(
PSE
N

− 1
)

where N = 36 is the probe numerosity.

Tracking
We measured the normalized cross-correlation

between changes in cursor position (output) and
computer-driven changes in the stimuli (input). The
value of the maximum correlation (peak) was taken
as a measure of participants’ performance in each
condition, where higher peaks of correlation mean
a greater similarity between changes in the stimulus
and tracks reproduced by participants. The width of
the cross-correlogram is also related to perceptual
abilities (Ambrosi et al., 2021; Bonnen et al., 2015),
and can be regarded as an indication of how long
the response to a stimulus persists. In contrast, the
lag of the cross-correlogram is only mildly related to
perceptual properties and more to the promptness of
the decision-making process: lower lags are generally
found when more visible changes in the stimulus
are used, but they do not correlate with perceptual
thresholds, as do peaks and widths (Ambrosi et al.,
2021; Bonnen et al., 2015). Figure 1C shows an example
of the resulting cross-correlation between numerosity
changes and joystick movements. The red curve is the
best fitting Gaussian to the peak correlation.

To estimate the effect of grouping, the on-screen
numerosity was recalculated as

N ′ = N − wGNLines (1)

where the recalculated numerosity Nʹ is the tracking
estimate of the PSE, N is the physical number of
lollipops on screen, NLines is the number of lines
connecting the lollipops and wG is the magnitude of the
grouping effect. The optimal wG was estimated for each
subject as the weighting factor that maximizes the peak
correlation, testing the range of −1 < wG < 2. Positive
values of wG correspond with underestimation caused
by grouping, where wG = 1 means two disks appear as a
single object (theoretical maximum effect), and wG = 0
means no effect at all. To compare the grouping effect

wG with standard psychophysical measures, we express
the grouping bias index:

BIAS (%) = 100 ∗
(
N ′

N
− 1

)

Substituting Nʹ from the previous equation gives

BIAS (%) = −100 ∗ wG
NLines

N

In the 2AFC experiment, NLines = N/5 (40%
connected), so we express the bias index as grouping
effect wG:

wG = −5 ∗
(
BIAS (%)

100

)

To address the temporal properties of grouping,
we analyzed data from the aggregate participant (all
participants combined), simulating the delayed effect of
linking items, from 0 ms to 500 ms, while independently
varying the weighting factor wG, as described elsewhere
in this article. The optimal delay and weight were again
estimated to maximize the peak correlation between
stimulus changes and joystick movements.

All the analyses were implemented on Matlab
2019b and on JASP (Version 0.14.1; jasp-stats.org).
Correlation analyses and analyses of variance were
complemented with Bayes Factors estimations. They
correspond to inclusion Bayes factors resulting from
the analysis of the effects across “all matched models.”
Bayes factors are reported in logarithmic base 10
units (log10BF) and their absolute values should be
interpreted as providing anecdotal (0–0.5), substantial
(0.5–1), strong (1–1.5), or very strong (>1.5) evidence,
in favor of the alternative hypothesis if positive or the
null hypothesis if negative (van Doorn et al., 2021).

Results

Tracking

As described in the Methods, participants were
required to continuously estimate the numerosity of a
cloud of dots and reproduce it on a number line using a
joystick. Both the number of dots and the proportion
connected by lines varied over time, following two
independent random walks (Figure 1B). To study the
temporal dynamics of participants’ responses, three
different rates of changes in the stimulus were tested
(800, 500, and 200 ms).

The main analyses were performed on the data of
individual participants. To characterize the strength of
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Figure 2. (A) Cross correlations in the three tested conditions (800 ms in blue, 500 ms in red, and 200 ms in green) for the 11
participants, with each panel showing the results from a single participant. The cross-correlograms are qualitatively similar in all
conditions. (B) Peak of the cross-correlogram for each participant and each condition. (C) Lag of the peak in milliseconds of the
cross-correlogram for each participant and each condition. (D) Width of the cross-correlogram, estimated as the Full width at half
maximum of the gaussian fit around the peak. For B, C, and D, circles are single participants values; stars are average values, color
coded as in A.

the cross correlation, we fitted the positive lobe with a
Gaussian, free to vary in height, width, and position
(Figure 1C). Figure 2 shows the results of the cross-
correlation analysis for all conditions and participants.
For each participant, shown in the different panels
of Figure 2A, cross-correlations are very similar to each
other, with largely overlapping profiles. This outcome
indicates that tracking performance was not degraded
by the faster refresh rates. In fact, all three conditions
(200, 500, and 800 ms) result in quantitatively similar
performances. No statistically significant changes were
detected in peak of correlation (Figure 2B) or lag of
the peak response (Figure 2C): all Bonferroni corrected
pBonf > 0.05 in post hoc comparisons on Gaussian
fits of the cross-correlograms with log10BF = –0.5
for peaks and log10BF = –0.6 for lags. The widths of
the cross-correlogram (Figure 2D) were statistically
different, but only when comparing the 800 and 200
ms conditions (pBonf = 0.04, log10BF = 0.26). This
difference can be interpreted as follows: with faster

refresh rates, participants’ responses are less spread
in time, because more rapid movements are made
when the stimulus is changing faster, but because the
peaks of correlation are not significantly different
from each other, this factor does not result in lower
tracking performance. Actually, narrower widths of the
cross-correlation are generally associated with better
performance (Ambrosi et al., 2021; Bonnen et al., 2015;
Bonnen et al., 2017). The results, therefore, suggest
a minor trend favoring the conditions with faster
refresh rate, with slightly higher peaks of correlation
(Figure 2B) and narrower widths (Figure 2D).

Figure 3 shows the method for calculating the effect
of connectivity on apparent numerosity. We assumed
that connecting the dots decreased the apparent
numerosity in direct proportion to the number of
connected dots, with a weighting factor wG, where
wG = 0 means zero effect and wG = 1 means that
each connected dumbbell was perceived as a single
item (Equation 1). We determined the grouping effect
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Figure 3. (A) Example of the resulting cross-correlograms when varying the weighting factor wG of the grouping effect (from left to
right, respectively: 0 and 0.5), as explained in the Methods. Weighting differently the lines results in a modulation of the peak
correlation. Red lines are results of gaussian fits around the maximum value. Black arrows highlight the peak of the fitted
cross-correlogram. (B) Example of maximum peak correlation values as a function of the weighting factor wG. The red arrow indicates
the wG that maximizes the peak correlation.

Figure 4. (A) Example of stimuli in the two-alternative forced choice (2AFC) experiment. The probe comprised a cloud of 36 lollipops,
with 40% connected by lines in the connected condition. The test was always a cloud of isolated lollipops of various numerosities. Test
and probe were presented sequentially, in random order, with a presentation time of 500 ms. (B) Example of psychometric curve
obtained in the isolated (black) and 40% connected (gray) 2AFC experiments by plotting the probability of reporting the test
numerosity as more numerous than the probe. The gray curve is clearly shifted to the left, showing that in the connected condition
the probe numerosity is underestimated. The vertical dashed lines show the estimates of the PSE, given by the mean of the fitted
cumulative Gaussian functions. (C) Peaks of cross-correlograms as a function of precision (Weber fraction) in the 2AFC experiment,
for the three conditions separately. Circles represent single subjects; stars show the mean across subjects. Thick lines show the linear
fit through the data.

wG empirically by varying it over a wide range and
choosing the value that gave the maximum peak in
cross-correlation. Figure 3A illustrates the procedure
for an example participant for two different weights:
the highest peak was for wG = 0.5. Figure 3B shows

how the correlation varied smoothly with wG over the
range, with a maximum at 0.5, indicated by a red arrow.
The best fitting weights for all participants for the three
refresh rates are plotted on the ordinate of Figure 5, as
discussed elsewhere in this article.
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Figure 5. (A) Bias indexes for each participant in the two-alternative forced choice (2AFC) and in each condition of the tracking
experiment. Dots are estimates for each participant separately, bars are mean values across participants, error bars are standard error
of the mean. (B) Underestimation bias (%) in the 2AFC experiment as a function of the bias in the tracking experiment for the three
conditions separately (800 in blue, 500 in red, and 200 in green). Circles represent single subjects; stars show the mean across
subjects. Thick lines show the linear fit through the data. The black dashed line is the equality line.

Psychophysics

After completing the first tracking experiment,
participants were asked to judge which of two
sequentially presented arrays seemed to include more
dots. One was the test (spanning 5–60 isolated dots),
the other the probe (with 36 dots connected by 7 lines;
see the Methods for experimental details) (Figure 4A)

Figure 4B shows the psychometric curves obtained
from plotting the probability of reporting the test as
higher numerosity for the two experimental conditions
(isolated in black and connected in gray) for a typical
participant. Data were fit with a cumulative Gaussian
distribution, shown as solid lines in the figure, whose
mean defines the PSE. The width of the underlying
Gaussian divided by its mean gives the participant’s
Weber fraction. The PSE (0.5 response) yields the
numerosity of the test that matched the probe. The
dashed arrows highlight the PSEs in the two conditions:
as expected in the isolated condition, PSEs are close
to the numerosity of the probe (mean PSE ± standard
error of the mean = 37.1 ± 0.2), whereas connecting
the 40% of dots yields to an underestimation of
approximately 11% (mean ± standard error of the
mean PSE = 32.1 ± 0.7). Also, the Weber fractions
in the connected and unconnected condition were
significantly correlated (r = 0.73; p = 0.01; log10BF =
0.8) and nonsignificantly different in a pairwise t test.

Figure 4C plots the values of peak correlation for
the tracking experiment against Weber Fractions (the
ratio between the mean and standard deviation of the
best-fitting Gaussians for the psychometric functions)
for the three different refresh rates. For all the three
conditions, the two variables are significantly negatively
correlated across participants (800 ms: r = −0.64, p
= 0.03, log10BF = 0.33; 500 ms: r = −0.76, p < 0.01,

log10BF = 0.92; 200 ms: r = −0.70, p = 0.02, log10BF
= 0.58), meaning that the lower the Weber fraction, the
higher the peak correlation.

Figure 5 shows the comparison of bias indexes
estimated from the 2AFC experiments and from
tracking. Figure 5A displays the bias for each
participant estimated in the 2AFC experiment (gray),
together with its average across participants and the
averages bias estimated with tracking (blue for the
800-ms condition, red for the 500-ms condition, and
green for the 200-ms condition). The mean bias across
subjects in the 2AFC experiment (mean ± standard
deviation = −11% ± 2% = 0.55 ± 0.10 in terms of the
weighting factor wG) agrees with the mean bias in the
800-ms and 500-ms tracking experiments (0.7 ± 0.1
and 0.55 ± 0.05 respectively), but not in the 200-ms
condition (0.2 ± 0.1).

Interestingly, the bias estimated from the 2AFC
experiment significantly correlated with bias from
tracking in the 800 ms condition (r = 0.72, p = 0.01,
log10BF = 0.70), but not with the bias in the other two
conditions (500 ms: r = 0.46, p = 0.1, log10BF = −0.20;
200 ms: r = 0.36, p = 0.3, log10BF = −0.39), as shown
in Figure 5B.

This result indicates a dependency of the grouping
effect on the time available to respond, approaching the
2AFC bias for smaller refresh rates. To explore further
this idea, we used an aggregate participant analysis,
pooling across all participants, and studied the temporal
properties of the response to the lines connecting the
discs. We varied independently the grouping weighting
factor and the delay between changes in numerosity and
changes in the number of lines connecting the items on
screen and searched for the maximum cross-correlation
peak over the two dimensions. We simulated a delay
of 0 to 500 ms for the effectiveness of grouping, while
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Figure 6. (A) Gain in peak correlation as a function of the grouping weighting factor, with delay between numerosity and number of
lines changes fixed at the optimal value found in the two-dimensional grid search analysis. Shaded areas represent the ±1 standard
error of the mean estimated via bootstrapping. The gain was calculated as the relative increment of the peak correlation as a function
of the grouping effect wG and of the delay, in respect to the peak found for wG = 0 and null delay. (B) Gain in peak correlation as a
function of the delay between changes in numerosity and changes in the number of lines. Shaded areas represent ± 1 standard error
of the mean.

simultaneously varying the weight for the effect of the
lines.

The results of this analysis are shown
in Figure 6. Figures 6A and B show the trend
of the gain in correlation with respect to the response to
the physical numerosity, that is, the relative increase in
the peak correlation with respect to the value obtained
for a wG of 0 and a null delay. To ease visualization,
data were plotted showing the variations owing to
only one of the two parameters, fixing the other to the
optimal value found in the grid search analysis. The
displayed trends were obtained fitting the results with
a polynomial function, and the optimal degree of the
polynomial was found as the best trade-off between the
goodness of fit measured through root mean squared
error and model complexity. The 200-ms condition has
very low gain (0.88%) with respect to the response to
the physical numerosity when compared with the 500-
and 800-ms conditions (4.8% and 4.4%, respectively).
Also, the dependency from the delay between changes
in numerosity and in the number of lines connecting
the items is close to null, with a maximum gain for a
delay of 458 ms, which may be considered spurious,
because the corresponding gain is very low. Note that
the gain at delays of up to approximately 100 ms are
negative because the gain is evaluated with respect to
the response to the physical numerosity (delay = 0 ms
and wG = 0).

The 800- and 500-ms conditions show a stronger
dependency on the delay (Figure 6B): in the 800-
ms condition, the dependency from the delay is
broad, with a global peak of 4.4% at 40 ms. In this
condition, gains over the range of 0 to 140 ms are not
significantly different from the highest gain at 40 ms
(two-sample t tests on peaks of correlation obtained

through bootstrapping and comparing the resulting
distributions for each delay with the distribution
corresponding to the optimal delay). Interestingly, the
gain in the 500-ms condition has a peak at 150 ms,
with a gain of almost 5%. Gains in the 50- and 230-ms
ranges are not significantly different from the peak at
150 ms. Distributions were considered not significantly
different if log10BF < 0.

These results suggest that grouping requires
additional time for processing, resulting in responses to
the number of lines connecting the dots delayed with
respect to the response to the physical numerosity on
screen.

Discussion

We used continuous tracking to study the effect
of grouping on numerosity perception. In a typical
tracking experiment, participants are asked to follow or
counteract changes in the stimulus, using a cursor or
eye movements. Here, participants tracked a property
of the ensemble—its numerosity—continuously by
sliding a joystick. Both the physical numerosity of
a cloud of dots, and the apparent numerosity (by
connecting a proportion of the dots with lines), varied
following independent random walks. The results show
that continuous tracking is a valid technique to study
numerosity perception and the effect of grouping
induced biases, verified by standard 2AFC techniques.
More important, continuous tracking provided
information on temporal properties of numerosity
perception, suggesting that grouping requires about 150
ms extra time to influence the perception of numerosity.
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As in other studies on tracking, we measured the
peaks, lags, and widths of cross-correlation between
stimulus and joystick position. Like previous studies
(Ambrosi et al., 2021; Bonnen et al., 2015; Bonnen et
al., 2017), the value of peak correlation was the best
predictor of performance and strongly correlated with
precision measures using standard 2AFC techniques.
The correlation peaks were not significantly different
for the three refresh rates, implying that task difficulty
was similar. However, the widths of the correlations
were significantly different between the 800 and 200 ms
conditions, with slightly narrower cross-correlograms
for faster refresh rates. Previous studies (Ambrosi et
al., 2021; Bonnen et al., 2015) report that narrower
cross-correlograms are generally associated with better
tracking performances, so this difference excludes the
possibility that the 200-ms refresh rate condition was
more difficult.

It is known that, when visual items such as circles
or squares are grouped together with connecting lines,
they seem to be less numerous (Anobile et al., 2017;
Franconeri et al., 2009; He et al., 2009; Pomè et al.,
2021a), evidence that numerosity operates on segmented
objects, defined by grouping, rather than individual
local elements. Here, we confirmed that connecting
items causes underestimation, both by a classical
discrimination task and by the tracking experiment. In
the 800- and 500-ms conditions, the underestimation
bias in the tracking experiment approached that of
the 2AFC (approximately 0.70 and 0.55, respectively,
with a gain in correlation of almost 5% on average),
whereas the very fast refresh rate (200 ms) showed
much lower dependency on the lines, with an average
gain in correlation of less than 1%, associated with an
average grouping effect of approximately 0.2. More
important, the bias indexes estimated in the 2AFC and
in the tracking experiments were significantly correlated
in the very slow changing rate (800 ms). In contrast, the
intermediate (500 ms) and very fast (200 ms) refresh
rates resulted in lower grouping effects, with almost no
effect in the fastest refresh rate condition. This finding
suggested that the underestimation of numerosity
caused by grouping is time dependent.

Previous studies have reported no difference in the
bias index associated with different presentation times
in the 50 to 1000 ms range (Franconeri et al., 2009), so it
is possible that that the reduction of the grouping effect
was related to the shorter time available to respond.
This point was also suggested by the difference between
widths of the cross-correlations, which indicates that
participants’ responses were significantly longer-lasting
in the 800-ms condition than in the 200-ms condition.

When simulating changes in the number of lines
connecting the items delayed with respect to changes
in numerosity, we found that, in the 500-ms condition,
the correlation was maximized for delays in the 100-
to 200-ms range, implicating a longer processing time

for the grouping effect. The 800-ms condition also
showed an increase in correlation when simulating a
delayed change in the number of lines, but this increase
was in the 0- to 140-ms range. This difference may
be because, in this condition, changes in the stimulus
were less frequent, so participants were less pressured
when performing the task. This factor could explain
responses to the lines with slightly lesser delays with
respect to the response to the physical numerosity, and
a weaker dependency of the gain in correlation as a
function of the delay. Moreover, the 200-ms condition
showed almost no dependency from delay, with only a
small gain in correlation, consistent with the fact that
the connectivity effect takes time to cut in, and this
refresh rate was too fast.

Taken together, these results suggest that grouping
requires additional encoding time to affect numerosity
perception, and that this additional encoding time has
measurable consequences on behavior. This conclusion
is in line with other recent studies on the effects of
grouping on numerosity. Fornaciai and Park (2018)
showed that neural activity encoding numerosity in
early visual cortex precedes neural activity related
to the effect of grouping by 50 to 100 ms. They first
explained their result as a reentrant feedback process
from midlevel visual areas in the dorsal and ventral
stream related to the segmentation of a visual scene
into perceptual objects. However, later studies from the
same group showed that feedback from higher order
cortical areas was not strictly necessary for perceptual
segmentation, suggesting that feedforward activity
carrying high- and low-frequency information are
sufficient for numerosity representation (Fornaciai &
Park, 2021). Although further experiments are needed
to link the neural signature observed in the early visual
cortex and the behavioral signature of the grouping
process reported in this article, it is possible that the
slower processing shown at the neural level might
be related to the slower influence of grouping on
participants’ responses.

Results comparable with ours were also obtained
using a speed-reaching paradigm (Milne et al.,
2013), which studied the effect of grouping on
speeded-reaching movements. Their results show that
fast-reaching movements, initiated in less than 325
ms, were not affected by grouping, but only by the
physical numerosity, regardless of the proportion of
connected items. This result can be compared with
our tracking experiment with a 200-ms refresh rate,
where only a negligible effect of grouping was present.
Also, computational models of numerosity encoding
(Dehaene & Changeux, 1993; Stoianov & Zorzi,
2012) predict that numerosity representations arise
from multiple stages of processing (Park et al., 2016;
Roggeman et al., 2011).

We conclude that the tracking paradigm is a useful
tool to study numerosity, including the underestimation
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effect caused by grouping, with results compatible with
standard psychophysical experiments. The continuous
nature of tracking provided dynamic information that
suggested, in line with previous behavioral (Milne et
al., 2013), neuroimaging (Fornaciai & Park, 2018), and
computational (DeWind, 2019; Stoianov & Zorzi, 2012)
studies, that numerosity representation arises through
multiple stages of processing. From a broader point of
view, the large amount of data in reasonable acquisition
times produced in tracking experiments might be useful
to test children and clinical populations, which may
not be able to undergo long testing sessions. Also, the
continuous nature of this technique might allow to test
more ecologically relevant stimulus conditions, that is,
to use more realistic stimuli.

Keywords: numerosity perception, continuous tracking,
perceptual grouping
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